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Abstract. The relationship between a microscopic parameter p, that is related to the probability of choosing
a mechanism of deposition, and the stochastic equation for the interface’s evolution is studied for two
different models. It is found that in one model, that is similar to ballistic deposition, the corresponding
stochastic equation can be represented by a Kardar-Parisi-Zhang (KPZ) equation where both λ and ν
depend on p in the following way: ν(p) = νp and λ(p) = λp3/2. Furthermore, in the other studied model,
which is similar to random deposition with relaxation, the stochastic equation can be represented by an
Edwards-Wilkinson (EW) equation where ν depends on p according to ν(p) = νp2. It is expected that these
results will help to find a framework for the development of stochastic equations starting from microscopic
details of growth models.

PACS. 68.35.Ct Interface structure and roughness – 05.40.-a Fluctuation phenomena, random processes,
noise, and Brownian motion – 02.50.-r Probability theory, stochastic processes, and statistics – 81.15.Aa
Theory and models of film growth

1 Introduction

The characterization of the roughness of a surface is an im-
portant issue in technology and science. Mechanical prob-
lems concerning wear, friction, or adhesion show a crucial
dependence on the smoothness of the surfaces that get into
contact. It is also known that surface roughness affects the
electrical, magnetic and optical properties of thin films,
which makes the development of better controlled surface
growth techniques an important line of research. These
techniques generally show growth regimes with common
spatio-temporal features, as for instance the appearance of
scale invariant rough surfaces [1]. Natural processes, such
as the propagation of forest fires or the growth of bacterial
colonies also show interfacial scale invariant behavior [1].
This scale invariance is revealed by scaling exponents and
functions that has to be measured in order to classify the
growth processes into universality classes.

Models of growing interfaces may be defined and stud-
ied either on discrete lattices or by means of continuous
equations. Discrete models are defined by a set of rules
that provide a detailed microscopic description of the evo-
lution of the surface. Some very well known discrete mod-
els are the random deposition (RD), the random deposi-
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tion with surface relaxation (RDSR), the ballistic depo-
sition (BD), the eden growth model, etc. [1–4]. In these
models the interface is described by a discrete set h(i, t)
that represents the height of site i at time t. The inter-
face has Ld sites, where L is the linear size and d is the
dimensionality of the substrate. The interface of the ag-
gregate is characterized through scaling of the interface

width W (L, t) ≡
√

1/Ld
∑Ld

i=1[h(i, t) − 〈h(t)〉]2. For this
purpose, the Family-Vicsek phenomenological scaling ap-
proach [5] has proved to be very successful for the de-
scription of the dynamic evolution of growing interfaces.
In fact, it may be expected that W (L, t) would show the
spatio-temporal scaling behavior given by [5]: W ∝ Lα

for t � tc and W (t) ∝ tβ for t � tc, where tc ∝ LZ is
the crossover time between these two regimes. The scaling
exponents α, β and Z = α/β are called roughness, growth
and dynamic exponents, respectively.

In contrast to the microscopic details of the grow-
ing mechanisms of the interface, continuous equations fo-
cus on the macroscopic aspects of the roughness. Essen-
tially, the aim is to follow the evolution of the coarse-
grained height function h(x, t) using a well-established
phenomenological approach that take into account all the
relevant processes that survive at a coarse-grained level.
This procedure normally leads to stochastic nonlinear
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partial differential equations that may be written as fol-
lows [1,6–8]

∂h(x, t)
∂t

= Gi{h(x, t)} + F + η(x, t), (1)

where the index i symbolically denotes different processes,
Gi{h(x, t)} is a local functional that contains the various
surface relaxation phenomena and only depends on the
spatial derivatives of h(x, t) since the growth process is
determined by the local properties of the surface. Also, F
denotes the mean deposition rate and η(x, t) is the deposi-
tion noise that determines the fluctuations of the incoming
flux around its mean value F . It is usually assumed that
the noise is spatially and temporally uncorrelated.

In order to establish the correspondence between a
continuous growth equation and a discrete model one can
follow at least three different methods: (i) to numerically
simulate the model and compare the obtained scaling ex-
ponents with those of the corresponding continuous equa-
tion, (ii) to develop a set of plausibility arguments using
physical principles and (iii) to derive the continuous equa-
tion analytically starting from a given discrete model.

There are few papers in the direction of the last
method. For example, a systematic approach proposed
by Vvedensky et al. [9], where the continuous equa-
tions can be constructed directly from the growth rules
of some discrete models, based on the master equation
description, has been applied successfully [9–12]. This
procedure requires the regularization step, in which the
non-analytic quantities are expanded and replaced with
analytic quantities, i.e., the step function is approximated
by an analytic shifted hyperbolic tangent function ex-
panded in a Taylor series. As pointed out by Předota and
Kotrla [11], the choice of the regularization scheme for the
step function is ambiguous. Thus, the coefficients in the
derived continuum stochastic equation cannot be deter-
mined uniquely. Another method has shown the connec-
tion between the ballistic deposition discrete model and
the Kardar-Parisi-Zhang (KPZ) equation in d = (1 + 1)
dimensions. However, this method is not successful in
d = (2 + 1) dimensions [13].

Within this context, the aim of the present work is to
study the connection between parameters related to the
microscopic dynamics of two discrete models, similar to
RDSR and BD, with their continuous equations in at least
d = (1 + 1), (2 + 1) and (3 + 1) dimensions, respectively.

The manuscript is organized as follow: firstly, in Sec-
tion 2, the models and previous results corresponding to
low dimensionality simulations will be shortly reviewed.
Subsequently, new results of numerical simulations per-
formed in higher dimensions will be presented and dis-
cussed in Section 3. In order to study the connection
between the parameters related to the microscopic dy-
namics and their corresponding continuous equations, a
phenomenological stochastic growth equation will be pro-
posed in Section 4. Finally, our conclusions will be stated
in Section 5.

2 Description of the models and previous
results

In the first discrete growth model, namely the RDSR/RD
model, particles of a single kind are aggregated according
to the rules of random deposition with surface relaxation
(RDSR) with probability p and according to the rules of
random deposition (RD) with probability (1 − p) [14]. In
the second discrete growth model, namely the BD/RD
model, particles are aggregated according to the rules of
ballistic deposition (BD) with probability p and according
to the rules of random deposition (RD) with probability
(1 − p) [15].

It should be noticed that the study of this kind of com-
petitive growth models has recently attracted growing at-
tention [16–21]. This interest is motivated by the fact that
in nature, and also in laboratories, actual growth processes
are most likely due to the interplay of various competing
mechanisms that may operate at different spatio-temporal
scales.

In the RD growth model a column is randomly chosen
along the width of the sample of side L. Then a particle is
allowed to fall vertically until it reaches the top of the se-
lected column, whereupon it is deposited. For this model,
W (t) does not saturate due the lack of lateral correlations,
so W (t) ∝ tβRD is independent of L with βRD = 1

2 .
In the lattice version of the RDSR growth model a

particle is released from a random position above the sur-
face and falls vertically until it reaches the top of the se-
lected column (just as in the case of the random deposition
model). Then, the deposited particle is allowed to relax to
a nearest neighbor column if the height of the neighboring
column is lower than the one corresponding to the selected
column.

It is well known that the RDSR model can be de-
scribed by the Edwards-Wilkinson equation which has the
form [1,6,7]:

∂h(x, t)
∂t

= F + νo∇2h(x, t) + η(x, t), (2)

where νo plays the role of an effective surface tension, since
the νo∇2h(x, t) term tends to smooth the interface. Equa-
tion (2) can be solved in Fourier space and the following
values of the exponents are obtained: z = 2, α = (2−d)/2
and β = (2 − d)/4. This model has an upper critical di-
mension dc = 2 above which one has α = 0 and β = 0

The lattice version of BD is rather simple to describe:
particles fall vertically onto the substrate from a random
position above the surface of side L. When a particle
reaches the surface, it sticks on the first site encountered
that is a nearest-neighbor of an already deposited particle.
Due to this constrain the growth of an interface essentially
parallel to the substrate is observed. This model can be de-
scribed by the Kardar-Parisi-Zhang (KPZ) equation [1,8]

∂h(x, t)
∂t

= F + νo∇2h(x, t) +
λ

2
[∇h(x, t)]2 + η(x, t).

(3)
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In this equation the nonlinear term represents the
lateral growth or the appearance of a driven force. In
d = (1 + 1) dimensions, the exponents of this equation
are z = 3/2, α = 1/2 and β = 1/3. In d = (2 + 1) dimen-
sions, the analytical solution is not known and numerical
simulations indicate α ∼ 0.40 and β ∼ 0.24 [22].

For both the RDSR/RD and the BD/RD models in
d = (1 + 1) dimensions, the saturation value Ws sensi-
tively depends on p: saturation takes place at longer times
for smaller values of p, while the width of the interface is
smaller for larger p-values. Furthermore, in both models,
three different regimes and the corresponding crossovers
can easily be observed. For short times, say t < tx1, the
random growth of the interface is observed (the RD pro-
cess dominates). At this stage, correlations have not been
developed yet and W (t) ∝ tβRD (t < tx1) holds. During
an intermediate time regime, say tx1 < t < tx2, correla-
tions develop since the RDSR (BD) process now domi-
nates leading to W (t) ∝ tβRDSR (W (t) ∝ tβBD). At a later
stage, for t > tx2, correlations can not longer grow due
to the geometrical constraint of the lattice size and satu-
ration is observed. The interface width Ws(L, p) and the
characteristic crossover time tx2 behaves as [14,15]:

Ws(L, p) ∝ LαX p−δ (p > 0), (4)

and

tx2(L, p) ∝ LZX p−y (p > 0), (5)

where δ and y are exponents and X ≡ RDSR, BD depend-
ing on the model. For tx1 < t < tx2 one has

W (t, p) ∝ tβX p−γ , (6)

where γ is also a characteristic exponent.
The exponents γ, δ and y are not independent. Using a

phenomenological dynamic scaling ansatz it can be shown
that the following relationship between exponents holds
at least in in d = (1 + 1) dimensions [14,15]:

yβX − δ + γ = 0. (7)

For the RDSR/RD model in d = (1 + 1) dimen-
sions, one has y ≡ 2 (1.97 ± 0.05), δ ≡ 1(0.97 ± 0.04),
and γ ≡ 1

2 (0.51 ± 0.05). Also, for the BD/RD model
y ≡ 1 (0.97 ± 0.02), δ ≡ 1

2 (0.45 ± 0.01), and γ ≡
1
6 (0.17 ± 0.01). Notice that the rational numbers are
the conjectured exact values for the new exponents, while
the values between brackets are the numerical estima-
tions [14,15].

3 Numerical simulations in higher dimensions

For both models, numerical Monte Carlo simulations were
performed in (2 +1) and (3 + 1) dimensions using lattices
of side L, with 16 ≤ L ≤ 256, and periodic boundary
conditions in the direction perpendicular to the growing
surface. As usual, a Monte Carlo time step (mcs) involves
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Fig. 1. Log-log plots of the interface width (W ) versus time for
the RDSR/RD model in d = (1 + 2) dimensions obtained for:
(a) L = 128 and different values of p as indicated in the figure,
and (b) p = 0.16 and lattices of different size, as indicated in
the figure. In Figure (b), the location of tx1 and tx2 is indicated
by arrows for the data corresponding to L = 256. The inset of
Figure (b) shows a linal-logarithmic plot of W versus t where
the RDSR dominated regime with β = 0 is shown by means of
a dashed line. More details in the text.

the deposition of Ld particles. Depending on L and d, the
results are averaged over 102−103 different runs.

Figure 1a shows log-log plots of W versus t obtained
for the RDSR/RD model in d = (2 + 1) dimensions tak-
ing L = 128 and different values of p. Also, Figure 1b
shows plots of W versus t for lattices of different size
but keeping p = 0.16 constant. For this model, as in
d = (1 + 1) dimensions [14], three different regimes can
easily be observed. For short times, say t < tx1, the ran-
dom growth of the interface is observed (the RD process
dominates). So, W (t) ∝ tβRD with βRD = 1/2. During
an intermediate time regime, say tx1 < t < tx2, corre-
lations develop since the RDSR process now dominates
leading to W (t) ∝ tβRDSR with βRDSR = 0 (this expo-
nent is the exact one for the RDSR model in d = (1 + 2)
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Fig. 2. Log-log plots of the interface width (W ) versus time
for the BD/RD model in d = (2 + 1) dimensions obtained for:
(a) L = 128 and different values of p as indicated in the figure,
and (b) p = 0.16 and lattices of different size, as indicated in
the figure. In Figure (b), the location of tx1 and tx2 is indicated
by arrows for the data corresponding to L = 256. More details
in the text.

dimensions). Notice that the expected dependence W ∝
ln(t), i.e. β = 0, is shown in the inset of Figure 1b. At a
later stage, for t > tx2 saturation is observed. The same
systematic study as in the case of d = (1 + 1) dimen-
sions [14] has also been performed. It is found that the
interface width Ws(L, p) and the characteristic crossover
time tx2 also follow equations (4) and (5) where the best
fits of the data give δ ∼= 0.96 ± 0.04 and y ∼= 1.9 ± 0.1,
respectively.

Figure 2a shows log-log plots of W versus t obtained
for the BD/RD model in d = (2 + 1) dimensions tak-
ing L = 128 and different values of p. Also, Figure 2b
shows log-log plots of W versus t for lattices of different
size but keeping p = 0.16 constant. Also for this model,
as in d = (1 + 1) dimensions [15], three different regimes
are observed. For t < tx1, W (t) ∝ tβRD with βRD = 1/2.
During an intermediate time regime (tx1 < t < tx2), W (t)
∝ tβBD with βBD ∼ 0.20 (this exponent is in agreement
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Fig. 3. Log-log plot of W versus p for the RDSR/RD model in
d = (2 + 1) dimensions obtained for L = 256 and different val-
ues of t as indicated in the figure. There are three regions with
different behavior as shown in the figure: i) the region domi-
nated by the RD process (left-lower side of the plot), ii) the
region corresponding to the saturation of the interface (right-
upper side of the plot), and ii) the central region of the plot that
corresponds to the intermediate regime. The straight (dashed)
line with slope γ = 0.95 corresponds to the best fit of the data.
More details in the text.
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Fig. 4. Log-log plot of W versus p for the BD/RD model in d =
(2+1) dimensions obtained for L = 256 and different values of
t as indicated in the figure. The same three regions, exhibiting
different behavior, as in the case of RDSR/RD model (Fig. 3),
are observed. The straight (dashed) line with slope γ = 0.32
corresponds to the best fit of the data. More details in the text.

with that reported for the BD model in d = (2+1) dimen-
sions [22]). Finally, at a later stage, for t > tx2 saturation
is observed. As in d = (1 + 1) dimensions the interface
width Ws(L, p) and the characteristic crossover time tx2

follow the equations (4) and (5) where the best fits of the
data give δ ∼= 0.45±0.04 and y ∼= 0.99±0.02, respectively.

Figure 3 (4) shows log-log plots of W versus p ob-
tained for the RDSR/RD (BD/RD) model in d = (2 + 1)
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dimensions taking L = 256 and different values of t. In
both cases it is found that equation (6) holds, where for
the RDSR/RD model γ ∼= 0.95±0.05 and for the BD/RD
model γ ∼= 0.32 ± 0.02, respectively.

Simulations of both models, performed in d = (3 + 1)
dimensions exhibit the same behavior as in smaller dimen-
sions (results are not shown here for the sake of space).
Furthermore, this behavior can be described by the same
exponents. The values of the obtained exponents for both
models are listed in Table 1 for d = (1 + 1), (2 + 1) and
(3 + 1) dimensions, respectively.

As in d = (1+1) dimensions, the exponents γ, δ and y
are not independent. We can generalize the phenomeno-
logical dynamic scaling ansatz derived in d = (1 + 1)
dimensions [15] to show that equation (7) is still valid
for higher dimensions. In fact, the last column of Table 1
shows that the predictions of equation (7) hold for both
models in all the studied dimensions.

It is interesting to note that while the exponents δ
and y are independent of the dimensionality, the remain-
ing exponents entering in the relationship given by equa-
tion (7), namely β and γ, are dimensionality dependent.
So, the latter exponents have to adjust their respective val-
ues in order to fit equation (7). This fact becomes nicely
apparent in the case of the RDSR/RD model above the
critical dimension dc = 2 such as β = 0 for d ≥ dc im-
plies that γ must remain fixed to γ = 1. In the case of the
BD/RD model no evidence on the existence of a critical
dimension is found (as in the case of the KPZ universal-
ity class) and consequently both β and γ change with the
dimensionality.

Finally, it is possible to conjecture exact values for the
exponents in the limit L → ∞, as shown between brackets
in Table 1.

4 Phenomenological stochastic growth
equations

It is known that the RDSR/RD model in d = (1 + 1)
dimensions can be described by the following phenomeno-
logical stochastic growth equation [14]

∂h(x, t)
∂t

= F + νop
2∇2h(x, t) + η(x, t), (8)

where p is the parameter related to the microscopic dy-
namics of the model.

In higher dimension we can use scaling arguments to
obtain the phenomenological stochastic growth equation.
In fact, assuming that the interface is as a function of x
and p it is possible to apply scaling arguments for both
coordinates. Furthermore, if the interface h(x, p, t) is self-
similar, then on rescaling it horizontally

x → x
′ ≡ bx, (9)

in the coordinate p

p → p
′ ≡ cp, (10)

and vertically

h → h
′ ≡ bαc−δh, (11)

one should obtain an interface that is statistically indistin-
guishable from the original one. Since the interface rough-
ness depends on time t as well, to compare two interfaces
obtained at different times one also must re-scale the time:

t → t
′ ≡ bzc−yh. (12)

Substituting transformations (9–12) into equation (8)
in different dimensions and requiring that the resulting
equation must be invariant under these transformations
we find:

z = 2, α = (2 − d)/2, β = (2 − d)/4, (13)

and

y = 2, δ = y/2. (14)

The relationships given by equation (13) are the well
known ones corresponding to the EW universality class [1].
Also, notice that the relations given by equation (14) are
independent of the dimensionality. Furthermore, they are
in full agreement with both, our previous results obtained
in d = (1 + 1) dimensions [14], and the results presented
in this manuscript for (2 + 1) and (3 + 1) dimensions (see
Tab. 1). So, we conjectured that equation (8) should be
valid in all dimensions for the RDSR/RD model.

For the BD/RD one could expect a phenomenological
stochastic growth equation similar to the KPZ equation,
where the parameters ν and λ should by certain func-
tions depending of p, ν(p) and λ(p), respectively. For the
BD/RD model, our previous numerical calculations have
shown two main results (Sect. 3): the exponents y and
δ are independent of the dimensionality and the relation
δ = y/2 is valid (see Tab. 1). Using these findings we
can follow similar scaling arguments as in the case of the
RDSR/RD model. However, it is already know that this
method fails in the case of the KPZ equation, when the
coordinate x is rescaled, because the parameters of this
equation (λ and ν) does not re-scale independently [1].
However, it is still possible to use the scaling argument in
the coordinate p only, in order to find ν(p) and λ(p).

As already discussed, in the BD/RD model the follow-
ing phenomenological stochastic growth equation of the
KPZ type is expected to hold:

∂h(x, t)
∂t

=F + ν(p)∇2h(x, t) +
λ(p)

2
[∇h(x, t)]2 + η(x, t).

(15)

Assuming that the interface h(x, p, t) is self-similar,
then on rescaling it in the coordinate p

p → p
′ ≡ cp, (16)

and vertically

h → h
′ ≡ c−δh, (17)
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Table 1. List of exponents β, δ, y and γ, measured by means of numerical simulations, for both the RDSR/RD and BD/RD
models in different dimensions. The values between brackets are our conjectured exact values for the exponents in the limit
L → ∞. The last column shows that equation (7) holds for the measured exponents.

Model d β δ y γ yβ − δ + γ

BD/RD 1+1 0.303(1/3) 0.451(1/2) 0.972(1) 0.171(1/6) 0.013

BD/RD 2+1 0.203 0.454(1/2) 0.992(1) 0.322 0.075

BD/RD 3+1 0.064 0.454(1/2) 0.992(1) 0.403 0.016

RDSR/RD 1+1 0.233(1/4) 0.974(1) 1.975(2) 0.515(1/2) 0.017

RDSR/RD 2+1 0 0.964(1) 1.91(2) 0.955(1) −0.016

RDSR/RD 3+1 0 0.954(1) 1.92(2) 1.01(1) 0.0510

one should obtain an interface that is statistically indistin-
guishable from the original one. Since the interface rough-
ness depends on time t as well, one has

t → t
′ ≡ c−yh. (18)

Substituting the scaling transformations (16-18) with
y = 1 and δ = 1/2 into equation (15) in different dimen-
sions and requiring that the equation must be invariant
under these transformations it follows:

ν(p) = νp, (19)

and

λ(p) = λp3/2. (20)

So, the following equation could be the phenomenolog-
ical stochastic growth equation for BD/RD model

∂h(x, t)
∂t

= F + νp∇2h(x, t) +
λp3/2

2
[∇h(x, t)]2 + η(x, t).

(21)

A naive (linear) approach to the development of the
growth equations corresponding to both the RDSR/RD
and BD/RD models should be to combine the equation
of RD (Eq. (1) with Gi{h(x, t)} ≡ 0) weighted by a fac-
tor (1− p), with the EW equation (Eq. (2)) and the KPZ
equation (Eq. (3)), weighted by a factor p, respectively.
However, as the simulations show this approach is obvi-
ously not correct since both equation (8) and equation (21)
contain non-linear terms in p.

The physical reasons leading to nonlinear dependences
of the coefficients of the growth equations on p is not
clear for us. Within this context, it should be noticed that
the development of stochastic growth equations describing
the crossover between different growth regimes is a sub-
ject of ongoing study and that is not fully understood yet
[23–27]. For example, according to scaling theories and
renormalization group analysis, the crossover time (tc be-
tween the KPZ (with probability p∗) and the EW (with
probability (1 − p∗)) growth regimes is expected to be-
have as tc ∝ λ−φ ∝ p∗−γφ, where λ is the usual coefficient
of the nonlinear term of the KPZ equation, φ and γ are
exponents such as φ > 0 since the EW-KPZ crossover
vanishes in the limit λ = 0. Notice that the above rela-
tionships imply that λ ∝ p∗γ . Scaling arguments suggest

that φ = 4 in (1 + 1)−dimensions [23], a result that is
confirmed by renormalization group calculations [24]. A
scaling approach by Amar and Family [28] further sup-
port this result. While early numerical results were con-
sistent with φ ≈ 3, recent extensive simulations also give
φ � 4 and γ = 2.1 ± 0.02. So, the nonlinear term of the
KPZ equation vanishes almost quadratically (λ ∝ p∗γ) for
p∗ → 0 such as only for p∗ = 0 one has the EW universal-
ity class.

On the other hand, there are growth models, such as
the Silva-Moreira (SM) model [26], where the parameter λ
can be tuned continuously and even change its sign. In
fact, combining two models belonging to the KPZ uni-
versality class, namely the BD model (λ > 0) weighted
by a factor p∗∗ and the restricted SOS Kim-Kosterlitz
(KK) model (λ < 0) weighted by a factor 1− p∗∗, one has
that the nonlinear term of the resulting model vanishes for
p∗∗c � 0.83 [26]. According to the results presented in this
paper, combining the SM model (weighted by a factor p)
and the RD model (weight factor 1−p), one should expect
a lineal dependence of the type ν ∝ p for p∗∗ �= p∗∗c (KPZ
universality class), while this dependence would switch to
a quadratic one for p∗∗ = p∗∗c (EW universality class). So,
in spite of the fact that we can not give a plausible phys-
ical argument in order to explain the dependence of the
coefficients of the growth equations on p, one may expect
that the sudden switch from quadratic to linear one, in
the limit of vanishing λ, would reflect the change of the
universality class that the model undergoes in that limit.

5 Conclusions

Summing up, we have studied in (1 + 1), (2 + 1) and
(3+1) dimensions the relationships between a microscopic
parameter of a growing process and the corresponding
stochastic equation. Two models are treated: in the first
model, a microscopic parameter p, adjust the probability
of the random deposition with relaxation process versus
the random deposition one. It is found that the stochas-
tic representation for this model is a Edwards Wilkinson
equation where the parameter p appears as a factor of
the form ν(p) = νp2. In the second model, a microscopic
parameter p, adjust the probability of the ballistic depo-
sition process versus the random deposition one. In this
case an stochastic equation of the KPZ type is found and
the parameter p appears in both factors, corresponding to
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the lineal and non-lineal terms, taking the form ν(p) = νp
and λ(p) = λp3/2, respectively. It is also found that the
exponents y and δ are independent of the dimensionality
of the substrate. It is shown that the relationship between
exponents given by yβ − δ + γ = 0 holds up to (3 + 1)
dimensions, and it is conjectured that it may also be valid
in higher dimensions.

The derivation of coarse-grained stochastic equations
starting from microscopic models is an interesting chal-
lenge in the field of Statistical Physics. So, we expect
that the relationships between microscopic parameters
and stochastic equations presented in this work will stim-
ulate this kind of studies.

This work was financially supported by CONICET, UNLP and
ANPCyT (Argentina).
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